欢迎进入 304am永利集团官网

当前位置: 304am永利集团官网 > 学术交流 > 正文

"九章讲坛"第874讲 — 王冀鲁 教授

日期:2024-08-15点击数:

应304am永利集团官网邀请,哈尔滨工业大学(深圳)王冀鲁教授将于2024年8月16-19日访问兰州大学,期间举办专题学术报告,欢迎全校师生参加。

报告题目: Optimal L^2 error estimates of unconditionally stable FE schemes for the Cahn-Hilliard-Navier-Stokes system

报告摘要:The paper is concerned with the analysis of a popular convex-splitting finite element method for the Cahn-Hilliard-Navier-Stokes system, which has been widely used in practice. Since the method is based on a combined approximation to multiple variables involved in the system, the approximation to one of the variables may seriously affect the accuracy for others. Optimal-order error analysis for such combined approximations is challenging. The previous works failed to present optimal error analysis in $L^2$-norm due to the weakness of the traditional approach. Here we first present an optimal error estimate in $L^2$-norm for the convex-splitting FEMs. We also show that optimal error estimates in the traditional (interpolation) sense may not always hold for all components in the coupled system due to the nature of the pollution/influence from lower-order approximations. Our analysis is based on two newly introduced elliptic quasi-projections and the superconvergence of negative norm estimates for the corresponding projection errors. Numerical examples are also presented to illustrate our theoretical results. More important is that our approach can be extended to many other FEMs and other strongly coupled phase field models to obtain optimal error estimates.

时 间:2024年8月17日(星期六)11:30.

地 点:理工楼631

欢迎广大师生光临!


报告人简介

王冀鲁,哈尔滨工业大学(深圳)教授,博导,曾入选国家级青年人才计划,此前为北京计算科学研究中心特聘研究员。她的研究课题主要集中在偏微分方程数值解,具体包括关于浅水波方程、多孔介质中不可压混溶驱动模型、薛定谔方程以及分数阶方程的数值方法,研究成果发表在 《Numer. Math》、《SIAM J. Numer. Anal.》、《Math. Comput.》、《SIAM J. Control Optim.》、《J. Comput. Phys.》等计算数学权威期刊,目前分别主持和参与国家自然科学基金面上项目和重点项目。


甘肃应用数学中心

304am永利集团官网

萃英学院

2024年8月14日